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phases of a large Nc gauge theory. We find that an external magnetic field promotes chiral

symmetry breaking, consistent with the “magnetic catalysis” observed in the field theory

literature, and seen in other studies using holographic duals. The external field increases

the separation between the deconfinement temperature and the chiral symmetry restor-

ing temperature. In the deconfined phase we investigate the temperature-magnetic field

phase diagram and observe, for example, there exists a maximum critical temperature (at

which symmetry is restored) for very large magnetic field. We find that this and certain

other phenomena persist for the Sakai–Sugimoto type models with probe branes of diverse

dimensions. We comment briefly on the dynamics in the presence of an external electric

field.
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1. Introduction

Since the advent of the AdS/CFT correspondence[1, 5, 3], (see a review in ref.[4]) there

has been considerable refinement of the methods for studying strongly coupled large Nc

gauge theories. Much effort has been spent studying such systems at both zero and finite

temperature, constructing specific “holographic” models intended to capture key features

of QCD at strong coupling, such as the confinement/deconfinement phase transition, chiral

symmetry breaking, and possible novel phases that may be of relevance to experiment and

observation.

The Sakai–Sugimoto model, as described in ref. [7] is one such construction which

cleanly realizes chiral symmetry breaking and deconfinement. The supergravity background

of this model is constructed of near-horizon geometry of Nc D4-branes, following ref.[5].

The study of Nf flavour D8 branes in this background when Nf ≪ Nc reveals a nice

geometric realization of chiral symmetry breaking. The flavour branes do not backreact on

the background geometry in this probe limit and therefore studying their dynamics using

the Dirac-Born-Infeld (DBI) action (including a Wess-Zumino term, if necessary) suffices to

capture the corresponding gauge theory dynamics of fundamental flavours in an analogue

of the quenched approximation.

In this (DBI) regime it is possible to capture general gauge theory features such as the

phase diagram for temperature vs chemical potential by considering probe brane in finite
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temperature supergravity background and exciting specific gauge field on the world–volume

of the probe brane. Previous such studies including the non–zero chemical potential in this

model have been carried out in e.g., refs. [12, 14 – 16]. Here, we will introduce an external

magnetic and electric field.

A clear method for introducing a background magnetic field has been previously dis-

cussed in the D3/D7 model in ref. [26]. The authors consider pure gauge B–field in the

supergravity background, which is equivalent to exciting a gauge field on the world-volume

of the flavour branes corresponding to a magnetic field.

We find that the presence of magnetic field promotes the spontaneous breaking of chiral

symmetry. This is expected from the field theory perspective and is widely recognized as a

sort of “magnetic catalysis” for chiral symmetry breaking (see e.g., ref. [30]). Further study

of the phase structure of this model reveals the existence of a finite critical temperature

(for restoration of chiral symmetry) for large magnetic field. We analyze a number of other

physical quantities such as the latent heat and relative magnetisation associated to the

phase transition.

We also find that our phase structure is rather generic for the Sakai–Sugimoto type

holographic models where we consider the dynamics of probe Dp-brane in D4-brane back-

ground. We address some of the physics of an external electric field in the model. We find

that in the symmetry–restored phase an external electric field drives a current in the gauge

theory due to pair creation, and the symmetry–broken phase does not conduct. However

we have not considered the presence of baryons in our set-up, which could give rise to a

non-zero current in the phase where chiral symmetry is broken.

This paper, is organised as follows: We briefly review the Sakai–Sugimoto construction

in section 2. In section 3 we perform the analysis of probe D8–branes in the presence of

magnetic field, while in section 4 we discuss similar results for general probe Dp-brane. In

section 5 we comment on some aspects of the physics of an external electric field, concluding

in section 6.

Note added: when this paper was being prepared we became aware of ref. [28], in which

authors have studied related physics.

2. The Sakai–Sugimoto construction

The Sakai–Sugimoto model[7] consists of near-horizon limit of Nc D4-branes wrapped on

a circle of radius R in the x4 direction with anti-periodic boundary condition for fermions.

The D4-branes are intersected in the compact x4 direction by Nf D8-branes at x4 = −L
2

and Nf D8-branes at x4 = L
2 (with the constraint that L ≤ πR). This is dual to a

(4 + 1)-dimensional SU(Nc) Yang-Mills theory with gauge coupling constant g5; left and

right handed quarks are introduced by the flavour D8 and D8-branes in the probe limit

that share three spatial directions with the D4-branes. The flavour branes introduce a

global flavour symmetry U(Nf )L ×U(Nf )R as seen from the (4+1)-dimensional D4-brane

worldvolume gauge theory. This global symmetry is identified with the chiral symmetry

(non-abelian) of the effective (3 + 1)-dimensional gauge theory with chiral fermions. In
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the probe limit, the dynamics of the flavour branes is described by the DBI action in the

background of Nc D4-brane geometry. The background metric of D4-brane is obtained

from type IIA supergravity and is given by

ds2 =

(

u

RD4

)3/2
(

−dt2 + dxidxi + f(u)(dx4)2
)

+

(

u

RD4

)−3/2( du2

f(u)
+ u2dΩ2

4

)

,

eφ = gs

(

u

RD4

)3/4

, F(4) =
2πNc

V4
ǫ4 , f(u) = 1 −

(

UKK

u

)3

. (2.1)

Here xi are the flat 3-directions, t is the time coordinate, x4 is the spatial compact circle,

Ω4 are the S4 directions and u is the radial direction. ls is the string length, gs is the

string coupling; V4 and ǫ4 are the volume and volume form of S4 respectively. Also, φ is

the dilaton and F(4) is the RR four-form field strength. To avoid a conical singularity in

the {x4, u} plane one should make periodic identification:

δx4 =
4π

3

(

R3
D4

UKK

)1/2

= 2πR . (2.2)

This endows the background with a smooth cigar geometry in the {x4, u} plane. The

radial parameter R3
D4 is given by

R3
D4 = πgsNcl

3
s = πλα′ , (2.3)

where λ is the ’t-Hooft coupling. This construction has three dimensionful parameters

g5, L and R, where the L and R have been defined above. The five-dimensional gauge

coupling is given by g2
5 = (2π)2gsls. The four dimensional gauge coupling can be obtained

by dimensional reduction yielding g2
4 = g2

5/2πR. The five dimensional ’tHooft coupling

is defined to be λ = (g2
5Nc)/4π. The gravity picture is valid for small curvature which

amounts to λ ≫ R, namely for strong ’tHooft coupling. It should be noted that due to the

presence of a varying dilaton in equation (2) the type IIA supergravity background becomes

unreliable in the far UV and we need to lift it to M-theory for a possible UV-completion.

To consider the finite temperature version of the model we need to Euclideanise the

background in equation (2). This can be achieved by compactifying the time direction, t,

on a circle and identifying the period with inverse temperature β. In this case, the x4 circle

shrinks away at u = UT but the t circle is fixed. One can also construct a finite temperature

version by interchanging the role of the t and x4 circles so that now time circle shrinks

away at some value u = UT but the x4 circle remains fixed. It is easy to see that both these

constructions have the same asymptotic behaviour. These are the only known Euclidean

continuations of the background in equation (2) with the right asymptote. It is known (e.g,

in ref. [9]) that for T < 1/2πR (i.e low temperature), the background with the x4 circle

shrinking dominates, where for T > 1/2πR (i.e., high temperature) the background with

the t circle shrinking dominates; and this geometric transition between the two background

corresponds to the confinement/deconfinement transition.

So for low temperature the relevant background is given by equation (2) with the time

coordinate periodically identified with period β = 1/T , where T is the temperature. The
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high temperature background is given by

ds2 =
( u

R

)3/2
(

dxidxi + f(u)dt2 + (dx4)2
)

+
( u

R

)−3/2
(

du2

f(u)
+ u2dΩ2

4

)

,

t = t +
4πR

3/2
D4

3U
1/2
T

, T =
1

β
=

(

4πR
3/2
D4

3U
1/2
T

)−1

, f(u) = 1 −
(

UT

u

)3

. (2.4)

All the parameters are given by the same formula as equation (2). The dilaton, RR 4-

form, RD4 are also given by the same formula as equation (2). Now one can introduce the

flavour brane–anti-brane system in the probe limit, namely Nf ≪ Nc. In this limit the

probe branes do not backreact on the geometry and the classical profile of the probe is

solely determined by the Dirac-Born-Infeld action. We will consider the following ansatz

for the flavour D8-D8 branes:

{t, xi, x
4 = τ,Ω4, u = u(τ)} . (2.5)

For notational convenience we rename x4 coordinate to be τ , and we note that the

coordinates in the parenthesis should be understood as the worldvolume coordinates of the

D8/D8-brane.

3. The probe brane analysis

Many aspects of the finite temperature physics have been studied before, e.g. in refs. [9],[11]

and references therein. To introduce external magnetic field we follow the procedure

adopted in ref. [26]. We consider the presence of a pure gauge B-field given by, B2 =

Hdx2 ∧ dx3. As far as the DBI action is concerned it can be easily seen that such a choice

is equivalent to exciting a gauge field A3 = Hx2 on the worldvolume of the probe brane.

3.1 The low temperature background

In this case the relevant background is given by equation (2). With the probe brane ansatz

in equation (2.5) the induced metric on the worldvolume of D8/D8-brane is given by

ds2
D8 =

(

u

RD4

)3/2
(

dt2 + dxidxi
)

+

(

RD4

u

)3/2
(

f(u) + u′2

(

RD4

u

)3 1

f(u)

)

dτ2

+

(

u

RD4

)−3/2

u2dΩ2
4 , (3.1)

where u′ = du/dτ ; also we drop the negative sign in front of the time coordinate as we are

considering the Euclidean metric. The DBI action is given by1

SD8 = µ8

∫

d9ξe−φ
√

det(P [Gµν + Bµν ]) = C

∫

dτL(u, u′) , (3.2)

1It is a straightforward exercise to check that in this case the Wess-Zumino term does not contribute to

the probe brane action.

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
3

where C = µ8VS4VR3/gsT . Recall that we put the flavour branes (D8/D8) with the

asymptotic condition that as u → ∞, τ → ±L/2; where the ± corresponds to the D8 and

D8-brane respectively. Also note that the coordinate τ is restricted from −πR to +πR.

One can immediately note from equation (3.2) that L(u, u′) is independent of τ , there-

fore the Hamiltonian corresponding to τ will be a constant of motion. Carrying out the

following Legendre transformation we should have

Hτ = u′∂L(u, u′)

∂u′
− L(u, u′) = const. (3.3)

So the first integral of motion that follows from equation (3.3) is given by

u4

(

1 + H2
(

RD4
u

)3
)

1
2

f(u)

(

f(u) +
(

RD4
u

)3
u′2

f(u)

)
1
2

= U4
0

(

1 + H2

(

RD4

U0

)3
)

1
2
√

f(U0) . (3.4)

We have rewritten the constant in the right hand side in a convenient way. Note that

U0 is the minimum value of u that the probe brane can reach satisfying u′|u=U0 = 0.2 For

zero background magnetic field this set up reduces to the low temperature case analyzed

in ref. [9]. Let us now focus on the solution for the probe brane profile.

We will compare the behaviour of the brane profile in the presence of magnetic field

to the case when it is turned off. For notational convenience we define the following:

y =
u

U0
, yKK =

UKK

U0
, RD4 = U0d , L = U0l .

With the above redefinitions we can obtain the difference in slope of the profile in presence

and in absence of magnetic field as

u′2
H − u′2

H=0 = f(y)2
f(y)

f(1)

(y

d

)3
y8 H2d3

1 + H2d3

(

1

y3
− 1

)

,

with y ∈ [1,∞]. So we get that |u′
H | ≤ |u′

H=0| for each value of y. This in turn means that

the magnetic field bends the profile of the D8/D8 brane and therefore forces the brane–

anti-brane pair to join closer to the boundary (and hence break chiral symmetry) for fixed

asymptotic separation.

We can study this explicitly as follows. The brane–anti-brane separation at the bound-

ary (u → ∞) is given by

L

2
=

∫

dτ =

∫ ∞

U0(H)

duH

u′
H

=
R

3/2
D4

√

U0(H)

∫ ∞

1

y−3/2dy

f(y)

[

1+H2
“

d
y

”3

1+H2d3
f(y)
f(1)y

8 − 1

]1/2

=

∫ ∞

1
I(H)(y)dy . (3.5)

2We assume that the brane–anti-brane pair join smoothly, which implies that there is no resultant force

present at the point where they meet. Typically this would mean that there is no other source (e.g., a

baryon vertex or a bunch of F-strings) present at this point.
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Figure 1: The dashed U-shaped curve represents a profile in vanishing background field and the

solid U-shaped curve represents a profile when a non-zero magnetic field is present. These profiles

are obtained by numerically solving the equation of motion for the probe brane.

Clearly putting H = 0 we get the corresponding separation when the background magnetic

field is switched off.

L

2
=

R
3/2
D4√
U0

∫ ∞

1

y−3/2dy

f(y)
(

f(y)
f(1)y

8 − 1
)1/2

=

∫ ∞

1
dyIH=0 . (3.6)

For the same asymptotic separation magnetic field changes the brane profile’s point

of closest approach U0(H). We can compare U0(H) and U0. Equating equation (3.5) and

equation (3.6) one gets
√

U0(H)

U0
=

∫∞

1 IH=0dy
∫∞

1 I(H)dy
. (3.7)

Some algebra shows that IH=0 ≥ I(H) for all y, so the ratio on the right hand side is

greater than or equal to one, which also means that U0(H) ≥ U0. Therefore for the same

asymptotic separation the magnetic field can only help to join the brane–anti-brane pair

favouring chiral symmetry breaking. This is pictorially represented in figure 1.

We can extract more qualitative features in appropriate limits. To do so, let us rewrite

equation (3.5) with the change to variable z = y−3. With this equation (3.5) becomes

L

2
=

R
3/2
D4

3
√

U0

√

(

1 − y3
KK

)

(1 + H2d3)

∫ 1

0

(

1 − y3
KKz

)−1
z−5/6dz

√

(1−y3
KKz)(1+H2d3z)

z8/3 −
(

1 − y3
KK

)

(1 + H2d3)

.

(3.8)

Now small asymptotic separation corresponds to large values of U0 which means

yKK ≪ 1. So for small L and weak magnetic field (1/d3/2 ≫ H), the leading behaviour

of the separation is given by (using equation (3.8)), L ∼ R
3/2
D4 /

√
U0. This is same as

the leading behaviour in zero magnetic field case in ref. [9]. However, for strong mag-

netic field (1/d3/2 ≪ H), the leading behaviour obtained from equation (3.8) is given by,

– 6 –
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L

(a) (b)

Figure 2: The dependence of the asymptotic separation between the flavour branes in units of

R
3/2

D4
/
√

U0 with yKK and magnetic field in the low temperature phase. Figure 2(a) shows the de-

pendence of L with yKK for different magnetic field strength; blue (bottom most) curve corresponds

to H = 0, red (middle) corresponds to H = 1.0, green (top most) corresponds to H = 2.0. Figure

2(b) shows the behaviour of L with applied magnetic field for different values of yKK ; blue (bottom

most) curve corresponds to yKK = 0, red (middle) corresponds to yKK = 0.5, green (top most)

corresponds to yKK = 0.7. We have set d = 1.

L ∼ R3
D4H/U2

0 . So for fixed value of U0 the asymptotic separation scales with the applied

magnetic field strength H. This is however true only in the yKK ≪ 1 limit. The general

dependence is more complicated and a numerical study yields figures 2(a) and 2(b).

From figure 2(a) we can see that in the low temperature phase the asymptotic sep-

aration increases as the point of joining (i.e, U0) of the flavour branes decreases. This

means that the end points of the D8/D8 move further and further away as we go deeper

and deeper in the core. The role of magnetic field is to further increase this asymptotic

distance for a given yKK . However as we approach yKK = 1, the magnetic field does

not affect the separation of the flavour branes any more, since all curves start converging

rapidly near yKK = 1. This is the point where the background geometry ends precisely

where the flavour branes join, therefore all probes for any asymptotic separation should

end at this point irrespective of where they start from at infinity. This is consistent with

earlier studies in ref. [13].

On the other hand, figure 2(b) shows that for a fixed value of yKK magnetic field can

increase the asymptotic separation, but not indefinitely. This means that for a fixed yKK

as we increase the magnetic field the flavour branes move further away from each other,

but for high enough magnetic field this separation saturates and becomes insensitive to

further increment of the magnetic field. We will see later that such saturation shows up in

other physical quantities also. The role of yKK here is to shift each curve upwards as we

increase its value.

In ref. [8] it was noted that the special case of yKK = 0 (meaning when the radius of

the spatial circle goes to infinity and the compact direction becomes a flat direction) the

supergravity background is dual to a non-local NJL model in which the separation scale

between the brane–anti-brane pair (denoted as L here) determines an effective coupling for

a four fermi interaction term. As we have seen the magnetic field affects the asymptotic

separation and therefore tunes the effective coupling.
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H

0.5

0.6

0.7

0.8

Mq

Figure 3: The dependence of constituent quark mass (measured in units of (2πα′)−1) on the

external magnetic field in the low temperature phase. We have fixed UKK = 0.4 and RD4 = 1.

Note that in this model the bare quark mass is always zero as there is no separation

between the flavour and the colour branes at the boundary; however since the branes join

at some length scale U0 ≥ UKK in the core one can consider a string stretching from

u = UKK to u = U0. The mass associated with the string can be identified to be the

effective constituent quark mass as argued in ref. [9]. If we denote this mass by Mq, then

Mq = 1
2πα′

∫ U0

UKK

√
gttguu , where U0 has to be determined from equation (3.8) for given L.

This turns out to be a self-consistency equation for U0. This is analogous to the Gap

equation in the field theory context (e.g., in ref. [8]). The self-consistency equation turns

out to be

U0 =
4

9

R3
D4

L2

(

1 − y3
KK

) (

U3
0 + H2R3

D4

)

I(U0,H)2 , where (3.9)

I(U0,H) =

∫ 1

0

(

1 − y3
KKz

)−1
z−5/6dz

(

z−8/3
(

1 − y3
KKz

) (

U3
0 + H2R3

D4

)

−
(

1 − y3
KK

) (

U3
0 + H2R3

D4

))1/2
.

Now equation (3.9) can be solved perturbatively, i.e., starting with an initial value

for the parameter U0 we can determine the next order approximation to U0 using equa-

tion (3.9); and we continue until the desired accuracy has been achieved. It is straightfor-

ward to guess the initial value of U0. Plugging in H = 0 in equation (3.9) we should get the

constituent mass for the low temperature case. This can serve as the initial guess for small

magnetic fields. Once U0 is known for small magnetic fields, it can be used as the initial

guess for successively higher values of magnetic fields. Thus we obtain the dependence

which is shown in figure 3.

It is expected that the mass of the vector and pseudoscalar meson would monotonically

increase as the constituent quark mass increases. Figure 3 therefore should capture the

behaviour of massive vector and pseudoscalar meson spectra in presence of magnetic field.

Note that for this background disjoint brane pair do not exist: The constant τ -solutions

namely, τ = −πR/2 and τ = +πR/2 join at u = UKK . This is because of the cigar geome-

try of the background in the {τ, u} submanifold and the fact that τ -circle is wrapped by the

– 8 –
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probe branes. The brane pair must join together since there is no place in the geometry for

them to end separately. So the only configuration possible in the low temperature phase

breaks chiral symmetry by reducing the global U(Nf )L × U(Nf )R to the diagonal U(Nf ).

This is geometrically understood as the joining of the flavour 8-branes.

We can compute the action for this brane by substituting for the profile function into

equation (3.2). The result is

SD8 =
2C

3
R

3/2
D4 U

7/2
0(H)

∫ 1

0

z−8/3
(

1 + zH2d3
)

[(

1 − y3
KKz

)

(1 + zH2d3) − z8/3
(

1 − y3
KK

)

(1 + H2d3)
]1/2

.

(3.10)

Note that for small L, this energy is proportional to the vacuum energy of the sys-

tem. Recalling the behaviour of L for small yKK and weak magnetic field we get SD8 ∼
2CR

3/2
D4 /L7. This is similar to the leading order behaviour in absence of magnetic field

obtained in ref. [9]. On the other hand, for small yKK and strong magnetic field we get

SD8 ∼ 2CR3
D4H

1/2/L7/2. So sufficiently high magnetic field changes how the vacuum

energy blows up as L → 0. The general dependence is more involved which we do not

pursue here.

3.2 The high temperature background

Recall that the high temperature background is given by equation (2); and we again use

the same ansatz for the probe given by equation (2.5). As before the profile of the probe

brane is completely determined by the DBI action, from which a first integral of motion

can be readily obtained to be

u4

(

1 + H2
(

RD4
u

)3
)

1
2

f(u)

(

f(u) +
(

RD4
u

)3
u′2

)
1
2

= U4
0

(

1 + H2

(

RD4

U0

)3
)

1
2
√

f(U0) . (3.11)

For convenience we use the dimensionless variables defined in equation (3.5) along with the

new variable yT = UT /U0. Starting from the first integral of motion in equation (3.11) it is

easy to verify that the finite temperature analogue to equation (3.5) takes the following form

u′2
H − u′2

H=0 =
(y

d

)3 f(y)2

f(1)
y8 H2d3

1 + H2d3

(

1

y3
− 1

)

. (3.12)

This also suggests that |u′
H | ≤ |u′

H=0|, leading us to the same conclusion that the magnetic

field helps bending the branes. The analogue to equation (3.5) and (3.6) now take the

following forms

L

2
=

R3/2

√

U0(H)

∫ ∞

1

y−3/2dy

√

f(y)

[

f(y)
f(1)

1+H2
“

d
y

”3

1+H2d3 y8 − 1

]1/2
=

∫ ∞

1
IHdy ,

L

2
=

R3/2

√

U0(H)

∫ ∞

1

y−3/2dy
√

f(y)
[

f(y)
f(1)y

8 − 1
]1/2

=

∫ ∞

1
I0dy , (3.13)
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Figure 4: The dashed U-shaped curve represents a profile in vanishing background field and the

solid U-shaped curve represents a profile when a non-zero magnetic field is present. The straight

(red) solution does not have any qualitative change in presence or absence of the external field.

These profiles are obtained by numerically solving the equation of motion for the probe brane.

leading us to a similar conclusion as the low temperature case. This is pictorially repre-

sented in figure 4.

As before one can extract the dependence of the asymptotic separation in the small

yT limit. Again with the change to variable z = y−3 we get

L

2
=

R
3/2
D4

3
√

U0(H)

√

(

1 − y3
T

)

(1 + H2d3)

∫ 1

0

(

1 − y3
T z
)−1/2

z−5/6dz
√

(1−y3
T z)(1+H2d3z)

z8/3 −
(

1 − y3
T

)

(1 + H2d3)

.

(3.14)

So from equation (3.14) one can see that for small yT and weak magnetic field L ∼
R

3/2
D4 /

√

U0(H); whereas for small yT and strong magnetic field we get L ∼ R3
D4H/U2

0(H).

The general dependence has been studied numerically and the result is shown in figure 5(a)

and 5(b).

In figure 5(a) we see that the asymptotic separation decreases as yT increases, con-

sistent with studies in ref. [13]. The role of magnetic field is to shift the curves upwards,

namely to increase the asymptotic separation. However this effect vanishes as yT ap-

proaches its maximum value and the separation becomes insensitive to the background

magnetic field. Figure 5(b) shows a similar behaviour as the low temperature case. The

separation at the boundary becomes higher and higher for increasing magnetic field, but

for high enough field the flavour branes at the boundary tend to not sense any further

increment (therefore a saturation is obtained). In this case however, curves for different yT

may intersect each other (as shown in figure 5(b)) unlike the low temperature case.

The joining of the flavour branes inside the core can be associated with the effective

constituent quark mass. This corresponds to a self-consistency equation for U0 as in the low

temperature case. The equation can again be solved using the same perturbative approach

and the results are summarised in the figure 6. This behaviour of constituent mass is valid

when the curved solutions are the lowest energy solutions (the chiral symmetry broken

– 10 –
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Figure 5: The dependence of asymptotic separation between the flavour branes in units of

R
3/2

D4
/
√

U0 with yT and magnetic field in the high temperature limit. Figure 5(a) shows the depen-

dence of L with yT for different magnetic field strength; blue (bottom most) curve corresponds to

H = 0, red (middle) corresponds to H = 0.5, green (top most) corresponds to H = 0.7. Figure

5(b) shows the behaviour of L with applied magnetic field for different values of yT ; blue (top most

from right) curve corresponds to yT = 0, red (middle from right) corresponds to yT = 0.7, green

(bottom most from right) corresponds to yT = 0.9. We have set d = 1.

0.5 1 1.5 2
H

0.4

0.5

0.6

0.7

Mq

Figure 6: The dependence of constituent quark mass (measured in units of (2πα′)−1) on the

external magnetic field in the high temperature phase. We have fixed UT = 0.3 and RD4 = 1.

phase). In the presence of finite temperature there will be a first order transition to chiral

symmetry restored phase. We will study this transition later in the next section.

Now the trivial solution of equation (3.11), which is given by τ ′ = 0 has a different

physical meaning from the point of chiral symmetry breaking. Since the {t, u} submanifold

has the cigar geometry, the solutions τ = ±L/2 can remain disjoint and end at u =

UT separately. Therefore the trivial solutions in the high temperature case preserve the

full U(Nf )L × U(Nf )R symmetry by remaining disjoint. In order to determine the true

minimum energy configuration we need to compare the energies of the curved and the

straight branes. We pursue this in the next section.
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Figure 7: The dependence of zeros of ∆S on the magnetic field. Figure 7(a) shows the result for

zero magnetic field and figure 7(b) shows how the zero changes as we fix H = 1, 3, 5, 9 from above

to below respectively. We have set d = 1.

3.2.1 The probe brane profile and chiral symmetry breaking

To determine the true vacuum we consider the difference between the energies of the curved

and straight branes, which is given by

∆S =
Scurved − Sstraight

CU5
0 d

3
2

=

∫ ∞

1
dyy

(

y3 + H2d3
)1/2







1
(

1 − f(1)(1+H2d3)
f(y)(y3+H2d3)

y−5
)1/2

− 1







−
∫ 1

yT

dyy
(

y3 + H2d3
)1/2

. (3.15)

Here ∆S < 0 would mean chiral symmetry breaking, ∆S > 0 would mean chiral symmetry

restoration and ∆S = 0 would characterize a transition from symmetry broken phase to a

symmetry restored one. We employ numerical analysis to study this.

It is known from, e.g., ref. [9] that for high temperature and zero magnetic field there

exists a critical temperature beyond which the straight branes are energetically favoured,

implying that in the dual gauge theory chiral symmetry is restored. Below the temperature,

however, the symmetry is broken by energetically favoured curved brane pair that join

together. The plots for the energy difference ∆S is shown in figures 7(a) and 7(b) for zero

and non–zero values of magnetic field respectively.

It is evident that the first order phase transition from chiral symmetry broken to the

symmetry restored phase persists in presence of external magnetic field. From the zero of

∆S we can find out the critical value of yT for which the symmetry restoration occurs.

Now to represent the phase diagram in terms of physical quantities, we recall that there

is a length scale L corresponding to the separation of the brane–anti-brane pair at the

boundary. So we express the chiral symmetry restoring temperature in units of 1/L using

the critical value of yT in equation (3.14). The resulting phase diagram is shown in figure 8.

It is interesting to note that the presence of magnetic field increases the symmetry

restoring temperature. In other words it promoted the spontaneous breaking of chiral

symmetry. This fits with the general expectations from field theory (see e.g. refs.[30])

and the supergravity/probe intuition that introducing a magnetic field places more energy
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Figure 8: The phase diagram between applied magnetic field and the chiral symmetry restoring

temperature TχSB in units of 1/L, where L is the asymptotic separation between the branes. We

have set d = 1.

into the system; therefore in order to minimize the energy, condensates are formed (the

branes bend more) resulting in more readily broken chiral symmetry. (It should be noted,

however, that in this specific holographic model the identification of a quark condensate is

a rather subtle issue (see e.g., ref. [27]).)

We can extract some more information about the transition by studying certain ther-

modynamic quantities at the phase transition. To that end, let us note that the first

order phase transition is accompanied by entropy density that jumps at T = Tc yielding a

non–zero latent heat as reported in ref. [11], also a change in magnetization

∆s = − 1

VR3

∂ (Scurved − Sstraight)

∂T
, Clatent = Tc∆s ,

∆µ = − 1

VR3

∂ (Scurved − Sstraight)

∂H
. (3.16)

The absolute free energy and any thermodynamic quantity obtained from it (such as

the absolute magnetization) for the two classes of embeddings (the straight and the curved

branes respectively) are formally divergent quantities. Hence we compute the relative

quantities which are finite. We studied the dependence of the change in entropy density

and the relative magnetization numerically, and the results are shown in figures 9(a) and

9(b) respectively. The relative magnetization also shows a similar saturation behaviour for

high enough magnetic field. The straight branes correspond to the melted phase where

quarks are free whereas the curved branes correspond to the mesonic phase where quarks

exists in the form of bound states or chiral condensates. Therefore it is expected that the

chiral symmetry restored phase (corresponding to the straight branes) is more ionized than

the chiral symmetry broken phase (corresponding to the curved branes). This is in accord

with our observation that the relative magnetization is negative in figure 9(b).

4. Probing with Dp-Brane

We now consider general Dp/Dp-brane as flavours in the colour D4-brane background.

– 13 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
3

2 4 6 8 10 12
H

5

10

15

Ds

2 4 6 8 10 12
H

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

DΜ

(a) (b)

Figure 9: The behaviour of jump in entropy and change in magnetisation at the critical tempera-

ture where chiral symmetry is being restored. The vertical axis is evaluated in units of CU
7/2

0
R

3/2

D4

and we have set d = 1.

t x1 x2 x3 τ u θ1 θ2 θ3 θ4

D4 − − − − − × × × × ×
D4 − − − − × − × × × × QCD4

D6 − − − − × − × × − − QCD4

D8 − − − − × − − − − − QCD4

D4 − − − × × − × × × − QCD3

D6 − − − × × − × − − − QCD3

D2 − − × × × − × × × × QCD2

D4 − − × × × − × × − − QCD2

D6 − − × × × − − − − − QCD2

Table 1: The list of possible embeddings for probe branes of diverse dimensions in the D4-brane

background.

The low temperature background is given by equation (2) and the high temperature is

given by equation (2). Also we choose to parametrize the S4 as follows

dΩ2
4 = dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2

(

dθ2
3 + sin2 θ3dθ2

4

)

. (4.1)

There are several ways to place the probe brane. We list these possibilities in the table

above (being somewhat cavalier with the use of the term QCD), as done in ref. [13]

To introduce flavour brane in this set up we need to introduce probe branes that

extend in the u direction all the way up to u = ∞. In general we consider introducing

Dp−Dp brane which intersect the colour D4–branes at τ = ±L/2 at the boundary, where

the ∓ sign corresponds to position of the Dp and Dp-branes respectively. It can be noted

that the coordinate τ ranges from −πR to +πR, and therefore L ∈ [−πR/2,+πR/2].

By construction the flavour symmetry group3 is U(Nf )L × U(Nf )R. Depending on the

3For the (2 + 1)-dimensional case, chiral fermions do not exist. Therefore the global symmetry is just

an U(Nf )× U(Nf ) which we continue to refer as the chiral symmetry.
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dimension of the probe brane, the number of common directions between the colour and

the flavour branes is determined, which corresponds to the dimension of the dual gauge

theory. Such construction has previously been discussed in ref. [13]. We follow the same

approach as before to introduce magnetic field. By construction we can see that the

magnetic field which has support along the (x2, x3) direction will have no effect on QCD2.

4.1 Low temperature phase

We use similar ansatz as in equation (2.5) for Dp/Dp-brane, however depending on the

dimension of the probe brane we now place it at θi = π/2 as required following the table.

We also denote the profile of the probe brane by τ(u) (we change the choice of function

representing the brane profile, earlier we considered to parametrize them as u(τ)). The

probe brane DBI action4 can be written in the following generic manner

SDp =
N
T

∫

due−φ
(

gttguugn−3
xx (g2

xx + H2)(detSp−n)
)1/2

, (4.2)

where gab are the induced metric components on the world-volume of probe brane; n is the

dimension of the gauge theory and (p + 1) is the dimension of the probe Dp-brane. T is

the temperature of the background and N is given by

N = µpVRnVSp−n . (4.3)

Similar to the D8-brane case it is trivial to see that this action is independent of τ(u) and

contains only the first derivative of τ(u) with respect to u. Therefore the corresponding

first integral of motion will be the momentum corresponding to τ(u), which is:

up−n
(

u
RD4

)
3
4
(2n−p)

(

1 + H2
(

RD4
u

)3
)

1
2

f(u)τ ′

(

τ ′2f(u) +
(

u
RD4

)3
1

f(u)

)1/2
= const.

We see that this equation has the general structure as the D8-brane considered in equa-

tion (3.4); only difference appears in the power of an overall factor of u, which now con-

tains the general information of the dimension of the probe brane and the gauge theory.

Therefore magnetic field would have similar effects on the profile by bending them more,

promoting spontaneous chiral symmetry breaking.

The action can be computed by substituting τ ′ from equation (4.4) into equation (4.2).

The result is

SDp =
Nd

3
2 Up+1−n

0

gsTd
3
4
(2n−p)

∫ ∞

1
dy

y
p+2n

2

(

1 + H2 (d/y)3
)

y−3/2

(

y
p+2n

2 f(y)
(

1 + H2 (d/y)3
)

− f(1)(1 + H2d3)
)1/2

,

where we have used the rescaled variables as denoted in equation (3.5). The asymptotic

separation of the brane–anti-brane system is again given by L/2 =
∫∞

1 dyτ ′ .

4Once again it is straightforward to verify that there will be no Wess-Zumino term in any of these cases.

– 15 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
3

2 4 6 8 10
H0.15

0.20

0.25

0.30

T

2 4 6 8 10
H

0.16

0.18

0.20

0.22

0.24

0.26

T

(a) (b)

Figure 10: The phase diagram for n = 4 and n = 3. Figure 10(a) shows the phase diagram for the

4-dimensional gauge theory, the curves correspond to p = 8, 6, 4 from below to above respectively.

Figure 10(b) shows the corresponding phase diagram for 3-dimensional gauge theory, where the

curves correspond to p = 6, 4 from below above respectively. We have set d = 1.

The physics of chiral symmetry breaking remains the same. As before, in the confined

phase chiral symmetry is always broken which is enforced by the cigar geometry in {τ, u}
submanifold of the background geometry. Next we consider the high temperature case and

study the effect of magnetic field for a general probe brane.

4.2 High temperature phase

We carry out exactly similar analysis as before. We now find two distinct class of solutions,

namely the straight branes and the curved branes. The energy of the curved branes is

given by

Scurved
Dp =

2NUp+1−n
0 d3/2

gsTd
3
4
(2n−p)

∫ 1

0
dz

z−
4
3 z−

p+2n
6

(

1 + H2d3z
)

z
1
2

√

(1 − y3
T z)

(

z−
p+2n

6 (1 + H2d3z) (1−y3
T z)−(1+H2d3)(1 − y3

T )
)1/2

.

(4.4)

The the energy of the straight branes is given by

Sstraight
Dp =

2NUp+1−n
0 d3/2

gsTd
3
4
(2n−p)

∫ z−3
T

0
dzz−

4
3 z−

p+2n
12

√

(1 + H2d3z)z1/2 . (4.5)

The true vacuum is therefore determined by minimizing ∆S ∼ (Scurved
Dp −Sstraight

Dp ); ∆S < 0

means chiral symmetry breaking whereas ∆S > 0 means chiral symmetry restoration. By

looking at equation (4.4) and (4.5) one can conclude that the phase diagram will depend

on the combination of (p + 2n) for an n-dimensional gauge theory with flavour branes

wrapping an internal (p − n) directions. Specifically speaking for {n = 4, p = 4} and

{n = 3, p = 6} we should have exactly the same phase diagram. It can be seen that the

zeros of ∆S depends on H in exactly similar way for all these examples, so the basic nature

of the phase diagram would be universal. All there is left for the exponent (p + 2n) then

is to scale the symmetry restoring temperature. Numerical results are shown in figure 10.
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Indeed we observe a generic nature of phase diagram in such holographic models. We

also find that the upper bound to symmetry restoring temperature that can be reached

introducing external magnetic field depends on the dimension of the gauge theory and the

probe brane. We can observe that for a given dimension of the gauge theory the lesser the

number of directions wrapped by the probe brane along the internal S4, the higher is the

symmetry restoring temperature. Thus the information of the dimensions wrapped by the

probe brane is also encoded in the phase structure.

5. A note on background electric field

For this section we again consider the 8-branes as flavours. We can introduce a background

electric field by considering the following form of world–volume gauge field[29, 26]:

A1(t, u) = (−Et + h(u)) . (5.1)

This means we have a non-zero constant electric field along x1. The function h(u) encodes

the response of the fundamental flavours to the external field, namely it encodes the in-

formation of the non-zero current when flavours are free to move and therefore conduct.

Note that here we do not introduce any chemical potential, therefore in the gauge theory

there is no a priori candidate for carrying the charge. However, there could still be current

caused by pair creation in presence of the electric field. We comment on some observations

and expectations henceforth.

For simplicity we assume 2πα′ = 1. We choose the same ansatz for the probe brane

profile as equation (2.5). The DBI action can be computed to be

SD8 = C

∫

dudte−φGxx (detS4)
1
2
[

GttGxxguu + Gtth
′2 − guuE2

]1/2
,

guu = Guu + τ ′2Gττ , (5.2)

where C = (Nfµ8)/(VR3VS4), Gµν is the background metric and guu is the induced metric

component on the world-volume of the D8-brane along u-direction.

Now we will have two constants of motion corresponding to the function τ(u) and h(u)

as follows

Ce−φ
√

detS4Gxx(GttGxx − E2)Gττ τ ′

√

Gtth′2 − (E2 − GttGxx)(Guu + Gττ τ ′2)
= B ,

Ce−φ
√

detS4GxxGtth
′

√

Gtth′2 − (E2 − GttGxx)(Guu + Gττ τ ′2)
= J . (5.3)

The constants B and J are related to the minimum radial distance along the world-volume

of the probe brane (U0 as before) and the gauge theory current (a similar identification

made in ref. [29] holds here also).

Solving equation (5.3) numerically to look for all possible solutions is a difficult prob-

lem. Nevertheless, it can be shown from equation (5.3) that for confined phase there can

be only the joined solution (curved as before), for which the current vanishes if we impose
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the condition that the brane–anti-brane pair join smoothly at U0. This can be shown by

formally solving equation (5.3) to obtain τ(u) and h(u) as a function of u and the constants

B and J . If we expand the solution around the joining point u = U0 and demand that

τ ′ → ∞ as u → U0, we obtain that the current identically vanishes. However, if the branes

do join but not smoothly, this is no longer necessarily true. One could, in this case, have

cusp-like solutions for which the brane–anti-brane pair join at an angle and in order to sta-

bilize the system it is necessary to consider the inclusion of a bunch of fundamental strings

extending from the joining point u = U0 to u = UKK . This leads us to a construction much

like in refs. [14 – 16], where the effect of baryons was considered. Therefore the symmetry

broken phase may have a non-zero current carried by the baryons. The chiral symmetry is

always broken in this phase forced by the topology of the background.

For the deconfined phase, it can also be shown in a similar way that there exists

curved solutions joining smoothly at some U0, which has zero current modulo the caveat

mentioned in the last paragraph. This is intuitive from the gauge theory point of view, since

we are in a chiral symmetry broken phase therefore there is no charge carrier present to

conduct (ignoring the possibility of a baryon current). The possible effect of pair creation is

diminished by the existence of quark bound states in the symmetry broken phase. However,

for straight branes we expect non-zero current to flow.

A familiar fact from studying flavours in electric field tells us that the presence of

electric field induces a so called “vanishing locus” for the probe DBI action. The “healing”

procedure (e.g., in ref. [26]) is to give a non-zero vev to the current. In practice this is

obtained by substituting the functions τ(u) and h(u) from equation (5.3) in favour of the

constants B and J in the action in equation (5.2) and demanding the reality condition for

the action for u ∈ [UT ,∞]. The condition leads to the following two equations

(

GttGxx − E2
)2

= 0 ,

B2e2φGtt −
(

GttGxx − E2
)

Gττ

(

C2(detS4)GttG
2
xx − e2φJ2

)

= 0 . (5.4)

The two expressions are the terms in the on–shell action that go to zero in the numerator

and the denominator respectively. It can be shown from equation (5.4) that in order to

have J 6= 0 one has to have B = 0, which corresponds to the straight brane solutions.

For a given electric field, we can determine the position of the vanishing locus ueh from

the first condition in equation (5.4). Knowing ueh we can then extract the current J , and

therefore the conductivity using J = σE. To express the conductivity in terms of physical

quantities let us recall that

µ8 = (2π)−8α′− 9
2 , T =

3
√

UT

4πR
3/2
D4

.

Now we will restore the factors of (2πα′) and also set R3
D4 = πλα′ = 1. Combining

everything we get the following expression

σ =
4

27
λNfNcT

2

(

1 +
27

32

E

λπ3T 3

)1/3

. (5.5)

– 18 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
3

This conductivity is due to the melting of mesons at high temperature and pair creation

mediated by the electric field. Since we get this formula using DBI action, it captures

non-linear behaviour of the conductivity with respect to the electric field.

The effect of the electric field on chiral symmetry breaking should be to reduce the

symmetry restoring temperature by polarizing the bound states into constituent quarks.

The analysis above points to the fact that electric field works as expected from field the-

ory perspective. However, the energy consideration does not lead to the expected result,

because as electric field increases ueh also increases, therefore the straight branes which

extend all the way down to UT has more DBI action energy as compared to their curved

counterparts, which can only extend down to ueh. We hope to address this issue in future.

6. Conclusion

We have extended the study of Sakai–Sugimoto model to include the presence of external

electric and magnetic fields, examining the dynamics of the flavour sector in (an analogue

of) the “quenched” approximation. We have seen that external magnetic field helps in

chiral symmetry breaking. This particular effect of an external magnetic field has been

referred to as magnetic catalysis in field theory literature (see e.g., refs. [30]). Our results

and observations are consistent with results from those approaches. We found that the

chiral symmetry restoring temperature increases with increasing magnetic field. We have

further observed that such holographic models have an upper bound for the symmetry

restoring temperature depending on the dimension of the gauge theory and the probe

brane.

We briefly studied the effect of external electric field, and though we have not explored

all of the details, we expect the dynamics to be also consistent with the field theory intu-

ition, although (as we did for magnetic field here) the precise details should be interesting

to uncover. The presence of non–zero electrical conductivity is also an avenue of further

study. It would also be interesting to study Hall effect in such models when both electric

and magnetic fields are present.

Another important avenue would be to study the meson spectra in the presence of

these external fields, where we expect to see effects such as Zeeman splitting, the Stark

effect and so forth (as observed in the D3/D7 model in some of refs. [26]). We leave these

and many other interesting aspects for future exploration.
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